Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(4): e0231240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32287299

RESUMO

OBJECTIVE: REG-O3 is a 24-aminoacid chimeric peptide combining a sequence derived from growth hormone (GH) and an analog of somatostatin (SST), molecules displaying cartilage repair and anti-inflammatory properties, respectively. This study aimed to investigate the disease-modifying osteoarthritis drug (DMOAD) potential of REG-O3 by analyzing its effect on pain, joint function and structure, upon injection into osteoarthritic rat knee joint. DESIGN: Osteoarthritis was induced in the right knee of mature male Lewis rats (n = 12/group) by surgical transection of the anterior cruciate ligament (ACLT) combined with partial medial meniscectomy (pMMx). Treatments were administered intra-articularly from fourteen days after surgery through three consecutive injections one week apart. The effect of REG-O3, solubilized in a liposomal solution and injected at either 5, 25 or 50 µg/50 µL, was compared to liposomal (LIP), dexamethasone and hyaluronic acid (HA) solutions. The study endpoints were the pain/function measured once a week throughout the entire study, and the joint structure evaluated eight weeks after surgery using OARSI score. RESULTS: ACLT/pMMx surgery induced a significant modification of weight bearing in all groups. When compared to liposomal solution, REG-O3 was able to significantly improve weight bearing as efficiently as dexamethasone and HA. REG-O3 (25 µg) was also able to significantly decrease OARSI histological global score as well as degeneration of both cartilage and matrix while the other treatments did not. CONCLUSION: This study provides evidence of a remarkable protecting effect of REG-O3 on pain/knee joint function and cartilage/matrix degradation in ACLT/pMMx model of rat osteoarthritis. REG-O3 thus displays an interesting profile as a DMOAD.


Assuntos
Lesões do Ligamento Cruzado Anterior/complicações , Anti-Inflamatórios não Esteroides/uso terapêutico , Cartilagem Articular/efeitos dos fármacos , Hormônio do Crescimento/uso terapêutico , Articulação do Joelho/efeitos dos fármacos , Osteoartrite do Joelho/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico , Somatostatina/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Hormônio do Crescimento/farmacologia , Articulação do Joelho/patologia , Masculino , Osteoartrite do Joelho/etiologia , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes de Fusão/farmacologia , Somatostatina/análogos & derivados , Somatostatina/farmacologia
2.
Hum Mutat ; 38(2): 152-159, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27790796

RESUMO

Dent-2 disease and Lowe syndrome are two pathologies caused by mutations in inositol polyphosphate 5-phosphatase OCRL gene. Both conditions share proximal tubulopathy evolving to chronic kidney failure. Lowe syndrome is in addition defined by a bilateral congenital cataract, intellectual disability, and hypotonia. The pathology evolves in two decades to a severe condition with renal complications and a fatal issue. We describe here a proof of principle for a targeted gene therapy on a mutation of the OCRL gene that is associated with Lowe syndrome. The affected patient bears a deep intronic mutation inducing a pseudo-exon inclusion in the mRNA, leading to a OCRL-1 protein loss. An exon-skipping strategy was designed to correct the effect of the mutation in cultured cells. We show that a recombinant U7-modified small RNA efficiently triggered the restoration of normal OCRL expression at mRNA and protein levels in patient's fibroblasts. Moreover, the PI(4,5)P2 accumulation and cellular alterations that are hallmark of OCRL-1 dysfunction were also rescued. Altogether, we provide evidence that the restoration of OCRL-1 protein, even at a reduced level, through RNA-based therapy represents a potential therapeutic approach for patients with OCRL splice mutations.


Assuntos
Íntrons , Mutação , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Alelos , Processamento Alternativo , Substituição de Aminoácidos , Pré-Escolar , Ativação Enzimática , Éxons , Fibroblastos , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Imagem Molecular , Síndrome Oculocerebrorrenal/diagnóstico , Fenótipo
3.
Hum Mol Genet ; 24(4): 994-1006, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305077

RESUMO

OCRL mutations are associated with both Lowe syndrome and Dent-2 disease, two rare X-linked conditions. Lowe syndrome is an oculo-cerebro-renal disorder, whereas Dent-2 patients mainly present renal proximal tubulopathy. Loss of OCRL-1, a phosphoinositide-5-phosphatase, leads in Lowe patients' fibroblasts to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) accumulation, with defects in F-actin network, α-actinin distribution and ciliogenesis, whereas fibroblasts of Dent-2 patients are still uncharacterized. To search for mechanisms linked to clinical variability observed between these two OCRL mutation-associated pathologies, we compared dermal fibroblasts from independent patients, four affected by Dent-2 disease and six with Lowe syndrome. For the first time, we describe that Dent-2 fibroblasts with OCRL loss-of-function (LOF) mutations exhibit decrease in actin stress fibers, appearance of punctate α-actinin signals and alteration in primary cilia formation. Interestingly, we quantified these phenotypes as clearly intermediate between Lowe and control fibroblasts, thus suggesting that levels of these defects correlate with clinical variations observed between patients with OCRL mutations. In addition, we show that Lowe and Dent-2 fibroblasts display similar PI(4,5)P2 accumulation levels. Finally, we analyzed INPP5B, a paralogous gene already reported to exhibit functional redundancy with OCRL, and report neither differences in its expression at RNA or protein levels, nor specific allelic variations between fibroblasts of patients. Altogether, we describe here differential phenotypes between fibroblasts from Lowe and Dent-2 patients, both associated with OCRL LOF mutations, we exclude direct roles of PI(4,5)P2 and INPP5B in this phenotypic variability and we underline potential key alterations leading to ocular and neurological clinical features in Lowe syndrome.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação , Nefrolitíase/genética , Síndrome Oculocerebrorrenal/genética , Fenótipo , Monoéster Fosfórico Hidrolases/genética , Actinas/metabolismo , Substituição de Aminoácidos , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Fibroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Humanos , Nefrolitíase/metabolismo , Síndrome Oculocerebrorrenal/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Proteico
4.
PLoS One ; 8(4): e60193, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593172

RESUMO

Inversin is a ciliary protein that critically regulates developmental processes and tissue homeostasis in vertebrates, partly through the degradation of Dishevelled (Dvl) proteins to coordinate Wnt signaling in planar cell polarity (PCP). Here, we investigated the role of Inversin in coordinating cell migration, which highly depends on polarity processes at the single-cell level, including the spatial and temporal organization of the cytoskeleton as well as expression and cellular localization of proteins in leading edge formation of migrating cells. Using cultures of mouse embryonic fibroblasts (MEFs) derived from inv(-/-) and inv(+/+) animals, we confirmed that both inv(-/-) and inv(+/+) MEFs form primary cilia, and that Inversin localizes to the primary cilium in inv(+/+) MEFs. In wound healing assays, inv(-/-) MEFs were severely compromised in their migratory ability and exhibited cytoskeletal rearrangements, including distorted lamellipodia formation and cilia orientation. Transcriptome analysis revealed dysregulation of Wnt signaling and of pathways regulating actin organization and focal adhesions in inv(-/-) MEFs as compared to inv(+/+) MEFs. Further, Dvl-1 and Dvl-3 localized to MEF primary cilia, and ß-catenin/Wnt signaling was elevated in inv(-/-) MEFs, which moreover showed reduced ciliary localization of Dvl-3. Finally, inv(-/-) MEFs displayed dramatically altered activity and localization of RhoA, Rac1, and Cdc42 GTPases, and aberrant expression and targeting of the Na(+)/H(+) exchanger NHE1 and ezrin/radixin/moesin (ERM) proteins to the edge of cells facing the wound. Phosphorylation of ß-catenin at the ciliary base and formation of well-defined lamellipodia with localization and activation of ERM to the leading edge of migrating cells were restored in inv(-/-) MEFs expressing Inv-GFP. Collectively, our findings point to the significance of Inversin in controlling cell migration processes, at least in part through transcriptional regulation of genes involved in Wnt signaling and pathways that control cytoskeletal organization and ion transport.


Assuntos
Movimento Celular , Polaridade Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Cílios/metabolismo , Citoesqueleto/metabolismo , Ativação Enzimática , Feminino , Regulação da Expressão Gênica , Camundongos , Gravidez , Transporte Proteico , Pseudópodes/metabolismo , Transdução de Sinais , Fatores de Transcrição/deficiência , Transcriptoma , Proteínas Wnt/metabolismo , Cicatrização , beta Catenina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
5.
Cancer Res ; 72(21): 5505-15, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22962269

RESUMO

A number of solute carrier (SLC) proteins are subject to changes in expression and activity during carcinogenesis. Whether these changes play a role in carcinogenesis is unclear, except for some nutrients and ion carriers whose deregulation ensures the necessary reprogramming of energy metabolism in cancer cells. In this study, we investigated the functional role in tumor progression of the sodium/iodide symporter (NIS; aka SLC5A5), which is upregulated and mislocalized in many human carcinomas. Notably, we found that NIS enhanced cell migration and invasion without ion transport being involved. These functions were mediated by NIS binding to leukemia-associated RhoA guanine exchange factor, a Rho guanine exchange factor that activates the small GTPase RhoA. Sequestering NIS in intracellular organelles or impairing its targeting to the cell surface (as observed in many cancers) led to a further increase in cell motility and invasiveness. In sum, our results established NIS as a carrier protein that interacts with a major cell signaling hub to facilitate tumor cell locomotion and invasion.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Invasividade Neoplásica/patologia , Transdução de Sinais/fisiologia , Simportadores/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Imunofluorescência , Humanos , Immunoblotting , Imunoprecipitação , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução Genética , Técnicas do Sistema de Duplo-Híbrido
6.
N Engl J Med ; 365(25): 2377-88, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22187985

RESUMO

BACKGROUND: Charcot-Marie-Tooth neuropathy has been reported to be associated with renal diseases, mostly focal segmental glomerulosclerosis (FSGS). However, the common mechanisms underlying the neuropathy and FSGS remain unknown. Mutations in INF2 were recently identified in patients with autosomal dominant FSGS. INF2 encodes a formin protein that interacts with the Rho-GTPase CDC42 and myelin and lymphocyte protein (MAL) that are implicated in essential steps of myelination and myelin maintenance. We therefore hypothesized that INF2 may be responsible for cases of Charcot-Marie-Tooth neuropathy associated with FSGS. METHODS: We performed direct genotyping of INF2 in 16 index patients with Charcot-Marie-Tooth neuropathy and FSGS who did not have a mutation in PMP22 or MPZ, encoding peripheral myelin protein 22 and myelin protein zero, respectively. Histologic and functional studies were also conducted. RESULTS: We identified nine new heterozygous mutations in 12 of the 16 index patients (75%), all located in exons 2 and 3, encoding the diaphanous-inhibitory domain of INF2. Patients presented with an intermediate form of Charcot-Marie-Tooth neuropathy as well as a glomerulopathy with FSGS on kidney biopsy. Immunohistochemical analysis revealed strong INF2 expression in Schwann-cell cytoplasm and podocytes. Moreover, we demonstrated that INF2 colocalizes and interacts with MAL in Schwann cells. The INF2 mutants perturbed the INF2-MAL-CDC42 pathway, resulting in cytoskeleton disorganization, enhanced INF2 binding to CDC42 and mislocalization of INF2, MAL, and CDC42. CONCLUSIONS: INF2 mutations appear to cause many cases of FSGS-associated Charcot-Marie-Tooth neuropathy, showing that INF2 is involved in a disease affecting both the kidney glomerulus and the peripheral nervous system. These findings provide new insights into the pathophysiological mechanisms linking formin proteins to podocyte and Schwann-cell function. (Funded by the Agence Nationale de la Recherche and others.).


Assuntos
Doença de Charcot-Marie-Tooth/genética , Glomerulosclerose Segmentar e Focal/etiologia , Rim/metabolismo , Proteínas dos Microfilamentos/genética , Células de Schwann/metabolismo , Actinas/metabolismo , Adolescente , Adulto , Idade de Início , Animais , Doença de Charcot-Marie-Tooth/complicações , Criança , Feminino , Forminas , Heterozigoto , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Mutação , Proteínas da Mielina/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Fenótipo , Proteolipídeos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...